3,209 research outputs found

    High-efficiency cell concepts on low-cost silicon sheets

    Get PDF
    The limitations on sheet growth material in terms of the defect structure and minority carrier lifetime are discussed. The effect of various defects on performance are estimated. Given these limitations designs for a sheet growth cell that will make the best of the material characteristics are proposed. Achievement of optimum synergy between base material quality and device processing variables is proposed. A strong coupling exists between material quality and the variables during crystal growth, and device processing variables. Two objectives are outlined: (1) optimization of the coupling for maximum performance at minimal cost; and (2) decoupling of materials from processing by improvement in base material quality to make it less sensitive to processing variables

    Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand mediated adhesive dynamics of a spherical particle in wall bound shear flow

    Full text link
    The dynamics of adhesion of a spherical micro-particle to a ligand-coated wall, in shear flow, is studied using a Langevin equation that accounts for thermal fluctuations, hydrodynamic interactions and adhesive interactions. Contrary to the conventional assumption that thermal fluctuations play a negligible role at high Peˊ\acute{e}clet numbers, we find that for particles with low surface densities of receptors, rotational diffusion caused by fluctuations about the flow and gradient directions aids in bond formation, leading to significantly greater adhesion on average, compared to simulations where thermal fluctuations are completely ignored. The role of wall hydrodynamic interactions on the steady state motion of a particle, when the particle is close to the wall, has also been explored. At high Peˊ\acute{e}clet numbers, the shear induced force that arises due to the stresslet part of the Stokes dipole, plays a dominant role, reducing the particle velocity significantly, and affecting the states of motion of the particle. The coupling between the translational and rotational degrees of freedom of the particle, brought about by the presence of hydrodynamic interactions, is found to have no influence on the binding dynamics. On the other hand, the drag coefficient, which depends on the distance of the particle from the wall, plays a crucial role at low rates of bond formation. A significant difference in the effect of both the shear force and the position dependent drag force, on the states of motion of the particle, is observed when the Peˊ\acute{e}let number is small.Comment: The manuscript has been accepted as an article in Physical Review E Journa

    On dysregulated inflammation and airway host defense

    Get PDF
    Acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are characterized by dysregulated inflammation of the airways. The increased influx of immune cells and the accumulation of cytokines lead to cell death, tissue destruction and impaired pulmonary function. Intracellular proteins like histones and granule proteins of neutrophils, DNA fibers act as Danger-Associated Molecular Patterns (DAMPs), further promoting tissue damage. As a result, the lungs of such patients are at an increased risk of infection due to impaired host defense functions. During inflammation, there is an increased expression of osteopontin (OPN), a highly anionic phosphoglycoprotein, in the airways and it is involved in cell recruitment, tissue remodeling, and repair. In this thesis we show that OPN can interact with many cationic proteins and peptides present in the extracellular milieu of the inflamed airways. In the first paper included in this thesis we show that OPN bound to extracellular histones have protective function against DAMPs-induced inflammation. In the second paper, we show that OPN binds to several common innate antibiotics and abrogate their antimicrobial activities. Taken together, these data suggest that OPN can modulate the host immune functions, thereby increasing the susceptibility of the patients with airway inflammatory diseases to acquire infections.Use of anti-inflammatory drugs like roflumilast is a common treatment strategy in COPD to ameliorate severe exacerbations. In the third paper we highlight the adverse effects of roflumilast, in a murine acute airway infection model. The findings suggest that use of this drug can impair host defense functions of immune cells, thereby increasing the susceptibility of COPD patients to bacterial pathogens. DNase I is used to clear the airways of CF patients from highly viscous, high molecular weight eDNA rich sputum. In the fourth paper of this thesis, we elucidated the molecular aspects of the fragmented DNA that are important to exhibit antimicrobial properties against the common CF lung pathogen, i.e. P. aeruginosa. The findings highlight a novel aspect of host defense that could be employed treating bacteria resistant against conventional antibiotics

    Photovoltaic research needs industry perspective

    Get PDF
    An industries perspective of photovoltaic research needs is presented. Objectives and features of industry needs are discussed for the materials, devices, processes, and reliability research categories

    On associating Fast Radio Bursts with afterglows

    Get PDF
    A radio source that faded over six days, with a redshift of z0.5z\approx0.5 host, has been identified by Keane et al. (2016) as the transient afterglow to a fast radio burst (FRB 150418). We report follow-up radio and optical observations of the afterglow candidate and find a source that is consistent with an active galactic nucleus. If the afterglow candidate is nonetheless a prototypical FRB afterglow, existing slow-transient surveys limit the fraction of FRBs that produce afterglows to 0.25 for afterglows with fractional variation, m=2S1S2/(S1+S2)0.7m=2|S_1-S_2|/(S_1+S_2)\geq0.7, and 0.07 for m1m\geq1, at 95% confidence. In anticipation of a barrage of bursts expected from future FRB surveys, we provide a simple framework for statistical association of FRBs with afterglows. Our framework properly accounts for statistical uncertainties, and ensures consistency with limits set by slow-transient surveys.Comment: Accepted version (ApJL

    Gossip Codes for Fingerprinting: Construction, Erasure Analysis and Pirate Tracing

    Full text link
    This work presents two new construction techniques for q-ary Gossip codes from tdesigns and Traceability schemes. These Gossip codes achieve the shortest code length specified in terms of code parameters and can withstand erasures in digital fingerprinting applications. This work presents the construction of embedded Gossip codes for extending an existing Gossip code into a bigger code. It discusses the construction of concatenated codes and realisation of erasure model through concatenated codes.Comment: 28 page

    Faraday conversion and magneto-ionic variations in Fast Radio Bursts

    Get PDF
    The extreme, time-variable Faraday rotation observed in the repeating fast radio burst (FRB) 121102 and its associated persistent synchrotron source demonstrates that some FRBs originate in dense, dynamic and possibly relativistic magneto-ionic environments. Here we show that besides rotation of the linear-polarisation vector (Faraday rotation), such media can generally convert linear to circular polarisation (Faraday conversion). We use non-detection of Faraday conversion, and the temporal variation in Faraday rotation and dispersion in bursts from FRB\,121102 to constrain models where the progenitor inflates a relativistic nebula (persistent source) confined by a cold dense medium (e.g. supernova ejecta). We find that the persistent synchrotron source, if composed of an electron-proton plasma, must be an admixture of relativistic and non-relativistic (Lorentz factor γ<5\gamma<5) electrons. Furthermore we independently constrain the magnetic field in the cold confining medium, which provides the Faraday rotation, to be between 1010 and 3030\,mG. This value is close to the equipartition magnetic field of the confined persistent source implying a self-consistent and over-constrained model that can explain the observations.Comment: Submitted to MNRAS; An error in arguments of sec 2.2 of the previous version has been correcte

    FRB microstructure revealed by the real-time detection of FRB170827

    Get PDF
    We report a new fast radio burst (FRB) discovered in real-time as part of the UTMOST project at the Molonglo Observatory Synthesis Radio Telescope. FRB170827 was first detected with our low-latency (20 ± 7 Jy ms, and is narrow with a width of ∼400 s at 10 per cent of its maximum amplitude. However, the burst shows three temporal components, the narrowest of which is ∼30 s, and a scattering time-scale of 4.1 ± 2.7 s. The FRB shows spectral modulations on frequency scales of 1.5 MHz and 0.1 MHz. Both are prominent in the dynamic spectrum, which shows a very bright region of emission between 841 and 843 MHz, and weaker and patchy emission across the entire band. We show that the fine spectral structure could arise in the FRB host galaxy, or its immediate vicinity
    corecore